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Nonperturbative vacuum effect in the quantum field theory of meson mixing
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Replacing the perturbative vacuum by the nonperturbative vacuum, we extend a recent development of a
gquantum field theoretic framework for scalar and pseudoscalar meson mixing. The unitary inequivalence of the
Fock space of basainmixed eigenstates and the physical mixed eigenstates is investigated and the flavor
vacuum state structure is explicitly found. This is exploited to develop formulas for two flavor boson oscilla-
tions in systems of arbitrary boson occupation number. We apply these formulas to analyze the mixing of
with %’ and comment on the other meson-mixing systems. In addition, we consider the mixing of boson
coherent states, which may have future applications in the construction of meson lasers.
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[. INTRODUCTION flavor vacuum in a great detail contrasting to the fermion
case. The details of flavor vacuum, its perturbative expansion
The study of mixing transformations plays an importantin the mixing angle, and also some clarifying remarks on the
part in particle physics phenomenolo@§]. The standard Green function method and the arbitrary mass parametriza-
model incorporates the mixing of fermion fields through thetion are summarized in the accompanying Appendices.
Kobayashi-MaskawéCKM) [2] mixing of 3 quark flavors, a We begin in Sec. Il with investigation of the vacuum
generalization of the original Cabiblj8] mixing matrix be- ~ Structure using the relation between the base eigenstate and

tween thed and s quarks. In addition, neutrino mixing and the physical mixed-eigenstate fields. We derive the represen-

oscillations are the likely resolution of the famous solar neufation for the Pontecorvo mixing transformation for the bo-

; o . son case and explicitly calculate the flavor vacuum state
tLOno.puzzIe[4]. In the bOS.OH sector,. the @xmg o W_Ith structure in the quantum field theo(@FT). We then inves-
K" via weak currents_prowded the first evidenceQ¥® vio- tigate the unitary inequivalence of the two Fock spaces —
lation [5] and theB°B® mixing plays an important role in one is the space of mass eigenstates and the other is the space
determining the precise profile of a CKM,3] unitary tri-  of flavor eigenstates. In Sec. Ill, the ladder operators are
angle[6] in Wolfenstein parameter spafg]. The » »’ mix-  constructed in the mixed basis. These are used to derive time
ing in theSU(3) flavor group also provides a unique oppor- dependent oscillation formulas for 1-boson stategoson
tunity for testing QCD and the constituent quark model.states, and boson coherent states. Consequences from the re-
Furthermore, the particle mixing relations for both the fer-placement of the perturbative vacuum by the exact nonper-
mion and boson case are believed to be related to the cofHrbative (flavor) vacuum are demonstrated. Section 1V is
densate structure of the vacuum. The non-trivial nature of thélevoted to study specific cases in our formalism, such as the
vacuum is expected to hold the answer to many of the most7’ system. We show the numerical differences between the
salient questions regarding confinement and the symmetiyvo results: one from the perturbative vacuum and the other
breaking mechanism. from the nonperturbative vacuum. Conclusions and discus-

The importance of the fermion mixing transformations sions follow in Sec. V. In Appendix A, we present a deriva-
has recently prompted a fundamental examination of thenion of an explicit expression for the flavor vacuum operating
from a quantum field theoretic perspectif@]. A similar  the ladder operators of particle and antiparticle to the
analysis in the bosonic sector has also been underf@{en Vvacuum of mass eigenstates. In Appendix B, we discuss the
However, more recent ana|yﬂj$0] of the fermion mixing region of Va||d|ty for a perturbative expansion of the flavor
indicated that the previous res(i8] based on the perturba- vacuum. In Appendix C, we make some clarifying remarks
tive vacuum is only an approximation with respect to theon the Green function method and the arbitrary mass param-
exact one based on the nonperturbatifi@vor) vacuum. In  etrization discussed in recent literatdife®,11,13.
this work, we show that the same is true for the bosonic
sector. Upon the completion of our work, we notice that the||. THE MIXING RELATION AND VACUUM STRUCTURE
same conclusion was also drawn in recent literaf@dg. In ) o )
our work, however, the orthogonality between mass and fla- We start our analysis by considering the Pontecorvo mix-
vor vacua is shown in a straightforward algebraic methodnd relationship(14] for two fields:
rather than solving a differential equation for the inner prod-

uct of two vacua as presented [ihl]. As evidenced in the $o=C0S0p;+sinbe,,
previous literaturd8,10—13, the method of using a differ-
ential equation to prove the unitary inequivalence between b= —sinfp,+coshe,, (2.1

the two Fock spaces has been known for some time and our
algebraic method is a new development in this respectwhere ¢, , are the free fields with definite masses , and
Moreover, we analyze the structure of the nonperturbativep, ;, are the interacting fields with definite flavors g,
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respectively. The above mentioned relationship naturally . . .
arises by considering the mixing problem for the two quan- SZJ d3X[ pL(X) Dp(X) + PH(X) b a(X)
tum fields with the Lagrangian of the form
— B H(X) b o(X) = PL(X) p(X)]

L=LoatLog= N @Ldbpt dhda), (22 _ _
= f d*X[@1(X) 92(X) + @3(X) 91(X)
where Lg 5 are the free flavor-field Lagrangiarfs.e., ) ]
Loae)=2(9bLs0bais)— Mags Pais Pars)] and X is the —03(X) @1(X) — @1(X) @2(X)] 2.7
coupling constant responsible for mixing. It is straightfor-
ward to show that the above Lagrangian can be immediatelgo that Eq.(2.1) can be written in the form
diagonalized by the transformation given by Ef.1) with
an appropriate choice of mixing angte[10]. The param-
eters of the diagonalized Lagrangian can then be expressed
in terms of flavor-field massesn(, ,mg) and interaction con- . .
stant Q\); i.e., Ppp=e" 'S¢, e's? (2.9

b,= e_ié"qoleié"
a L]

with the transformation operator given by

tan(26)= ——— (2.3
o= Mg G(0)=€. 2.9
and The similarity transformation given by Eq.9) relates the
free field operatorg, , to the interacting fieldg, 5. These
,  (Me+md)=(m—m3)2+16\2 relationships can be obtained from the requirement of the
mi o= 5 . (249 inner product conservation

(al¢|B)=(alelb), (2.10

The free mass fields,; , can be written explicitly as

usual: . . .
where a linear transformation of state vector according to

_ L Lok p T aikx |ay=G~*(6)|a) (2.11
Pi zlz m(uklakle +Uk|bkie ) (2.9

relates the two Hilbert spaces, i.e., mass-eigenstate space
where ag; and by, are respectively the particle and anti- 712 and flavor-eigenstate spadé, ;=G *(6)H,. The
particle ladder operators for the free mass fields and the{fansformation given by Eq2.8) can also be viewed as the
satisfy the standard equal-time commutation relationships: rotation” of basis in the Hilbert space of quantum states
diagonalizing the bilinear Lagrangian given by Eg.2).
The operatoré can then be written in terms of ladder

- al 1=5:25
[aki 8y, 1= ok diir operatorsay; andby; as follows:

bei g 1= 8k b1 2.6 N ) L .
LBk By 1= Ok O 29 S:% §{7+(aﬁla122+bfﬁlb—ﬁz_aﬁlaﬁz_b—Elb*IZ2)
Here, kx= koXo—K-x and &i(k)=ko(K) = k?+m?. For the +y_(agb_pptapb g—alb’ —b' al)l,
spin-0 case, free mass-field amplitudgs andvy; are just
numbers, i.e.yg=vi = 1. The interacting flavor fields given (2.12

by Eq.(2.1) are the solutions of the Euler-Lagrange equation
for Eq. (2.2 and therefore can be completely determined inwhere we denotey, = \e;(K)/€e,(K) + \eo(K)/€,(k) and
terms of the two free spin-0 fields given by H8.5) and the  y_=\e;(k)/e5(K) — Vea(K)/ €,(K). Hereyz+ —y? =4. From
mixing angleé. Eqg. (2.12 we note that Eq(2.8) makes each clusteil,
This, however, gives rise to a highly nontrivial relation- defined by linear  superposition of  operators
ship between the Fock space of free fields and that of intera;, ap, b’ IZl’biIZZ)’ transform  into  itself, i.e.
ting fields. To build the Fock space of flavor eigenstates we _igy~ _ igg_ . . .
ac 90e'’= Q. The same can be said about its Hermitian

consider the representation of the transformation consiste + : ,
with Eq. (2.1) in the Fock space of mass eigenstates. Using@njugatet), . This means that we can consider the transfor-
the Baker-Hausdorff lemma, we can write the generator ofnation given by Eq(2.8) within each cluster with a specific

this transformation as momentunk:
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o t t t t _sirfe _sirfe
Q:§{7+(aﬁla§2+ b—Elb_gz_aglaﬁz_ b_glbfﬁz) Z11= ry ‘y2 = L yyz (2.18
Pt f g 4(c0520+—+sin20) 4| 1+ —sinze)
+y-(aib- o+ aib 1 —ag b —b’ Ay} 4 4
(2.13 —vy_sin 26 —vy_sin26
Z1p= v = v :
A . + . - .
Thus, the total transformation is given b= 11;e'’. It is 4( COSZQJ“TS'”ZQ) 401+ Ts'”ze)

also convenient to exprey as S;:=v2(TL+T;) with the N
operator'AI'g defined by Here, we note that the coefficien’;; and Z;, [see Eq.

(2.18] can be written as

i [ " b bT Z11=X%X, Zip=Xx"Y, (2.19
Ti=——F=lv+(aga—b b ;)
22 Tk k2 where

+y_(alb’ s~ apb )], (2.14 y_sing

X:
. Ca oAt . o ¥% sirfg
where the commutation relatidi’y, T ]=1 is satisfied be- 2\/ 1+ 2

tweenT, and Tl just the same way as the particle creation
and annihilation operators satisfy the commutation relations.

With the operatorsT, and T}, we can directly apply Eq. = y+sing
(2.9 to the mass-eigenstate vacuum and obtain ¥ sirfo
2\/ coso+ 2
—|0f 2" &
10:6.K) 0,5~ 2 2, CUOT'TE10)2 "~ coss .
21 y= . 2.2
@13 ¥2 sirto
cogh+
whereCl.(6) are the generalized binomial coefficients that 4

can be found after appropriate orderings ofand T are
carried out. In the expression given by E8.15, one can
treat the operator%g (fE) as the annihilatioricreation op-
erator of the vacuum fluctuation.

Thus, the flavor vacuum state given by Eg.17) can be
rewritten as

t Tt
For simplicity we now suppress the momentum notation 0.6)= ZZ I b’ 1tyahl,)"
in the ladder operators and take the flavor vacuum state in
the most general form ><(—an2err ,+yasb’))!0). (2.21)

This result can be further reduced as
0:6)= > Comd6)(a1)"(a2)'(bl1)™(b1)"(0).

(2.16 0,6)= ZZ X

1)“(3202) |0), (2.22

Applying the flavor annihilation operators to this vacuum, by defining new ladder operators
we obtain an infinite number of coupled linear equations for
the coefficientsC,,;,«(#) and solve these equations in Ap- Ci=xb_j+yb_,,

pendix A. As shown in Appendix A, we find
Cc,=—Xxb_,+yb_4, (2.23

where it is easy to check thpt;,cl]=x2+y?=1, [c,,c}]
=1, [cl,cg]zo. Now, it is possible to compute directly the
value of Z, because

1
|0,0)= Z; m(21131b11+ Zya1b" )"

X(—Zyaib! ,+ 2z )0y,  (2.17)

X2(n+l) 2 z2

_ o , (0,0/0,0)= 222 ni212=z2 > in) =
where Z=(0|0,6) is the normalization factor to be fixed by 2z n (1—x?)?
(6;0]0;6)=1 and the coefficientZ,, andZ,, are given by (2.24
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and the flavor vacuum is normalized to be 1, i{€.,0]0,6) eigenstate fields. Using Eq&.5 and(2.8), one can imme-

=1. Thus, we find diately obtain annihilation operators for the mixéthvor)
fields that are consistent with the Pontecorvo mixing rela-
) 1 tionship,
Z=1-x=rp . (2.29
L+ sirf 0/4 a,5=G L0, 5(0), (3.0
We see that the flavor vacuum state indeed exists in the Fock b, ﬁ:G—l( 6)b; G(6).

space of mass eigenstates and the normalization fatier
finite but less than 1 for any value of_sin# in the exact This is also consistent with the definition of flavor vacuum as
vacuum treatment. The same has been obtained in[RHf. the lowest energy state, i.e.,
solving a differential equation 0%0|0,0)=(0|G(#)|0). R R R
While such method of derivation using a differential equa- (0,0|H(6)]0,8)=(0|G(#)H(8)G *(6)|0)=(0|H,|0)=0,
tion has been known for some tifi@, 10—13, our algebraic (3.2
method presented in this work is a new development. . .

This proves then the unitary inequivalence between thavhereH(6¢) andH, are the Hamiltonians of mixed fields and
two Fock spaces of mass and flavor in the infinite volumeunmixed fields, respectively. Straightforward application of

limit following the procedure discussed in RgL1]: the Baker-Hausdorff lemma to E(B.1) yields
Vv B sing bt
lim <0|0!6>a 5= lim GX% _j d3k In Z) =0, a,=a;cosf+ _2 (7+a2+ Y- —2);
Voo Y V—oo 2773
(2.26 siné

83=2,0080+ ——(— y.ar+ y_b')),
for any time. While we agree with Rdf11] on the point that

only the infinite volume limit can warrant the unitary in- ing
equivalence even in the boson case, we note that the pertur- , —p . cosg+ S_(y+b_2+ y_ajb),

bative expansion of the exact vacuum in the boson case is 2

dramatically different from the case of the fermion. Although _

the normalization facto£ is a finite function for all values _ siné +

of y_siné, we observe that this expression given by Eq. b-p=bo€080+ —Z—=(—ybyty-2y). @3

(2.29 has singularity on the complex plane st sin 6=2i. . - _ .

This is in remarkable contrast from the fermion case wherdt is also not difficult to reverse Eq3.3) in order to obtain

the corresponding resu]gfermionzl_ygsinng does not how the mass-eigenstate ladder operators are expressed in
have any singularity on the complex plane. Thus, the flavokerms of flavor ones. Using the above relationships we can
vacuum|0,6) in terms of series in9 shall have a critical also find the time dependence of the flavor-eigenstate ladder
point and this would result in the divergence of the Tayloroperators in the Heisenberg picture since the time evolution
series expansion fof0|0,6) in powers of @ because such Of mass-eigenstate ladder operators are given by

expansion only makes sense for smalalues. As we ex-

plicitly show in Appendix B, the series given by E®.15 is a; (t)=eMola; g Hot=e le1dq, ,,
indeed divergent in the regioy_6>2. Such divergence . I _
does not occur in the fermion case. We also present some by At)=eMo'hy o~ Hol=e Terdp, ,. (3.9

clarifying remarks in Appendix C regarding the Green func- _ _ _ .
tion method and the aribitrary mass parametrization dis!n particular, after introducing more compact notation

cussed in the previous literatuf#0,11,13. ino ing
sin sinfy_
C=cosf, S,= 2” , S = 27 . (3.5

Ill. LADDER OPERATORS AND CONDENSATIONS

In the previous section, we have built the representationve find
of the mixing transformation given by E¢R.1) in the opera- o et 2 et 2 et
tor space ofp; ,, where the action of mixing is given by the 2.=(C€ U+ Sie 2 —S7e'%)a,
similarity transformation given by E¢2.8). We also consid- Ciept_ it st a—ietypt
ered the representation defined by operatig'(6) in the +CS,(e e )agt S, S-(e e )b,

Fock space and showed the unitary inequivalence between +CS,(e‘52t—e*‘Elt)b‘:B, (3.6)
the two (mixed and unmixed Fock spaces in the infinite
volume limit. _ . . aﬁt:(cze—iezt+82+e—islt_ Sgeislt)aﬁ

Let us now further investigate these representations to A A _ A
come up with physically measurable quantities. The fields +CS, (e ''—e 'eYa,+S,S (e 'al-ea)b’
@1, are defined by a superposition of ladder operators ot ietot
andb, , that form the basis in a linear Hilbert space of mass +CS. (e't'—e " 2)b_,,
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b_,=(C% 'alt+Sle ' -S2el)b_, Casitey2
. 4 . . . Z,=(0"|aja,|0")= 4 (0 |bfﬁb—5|0 ) (3.9
+CS,(e7'?'—e ' )b_z+S,S_(e'?'~e ')a,
+Csf(eifzt—e—i51‘)ag, One can show that the same result is true 5
=(0'|N,|0"). Thus, the condensate density of particles with
biﬁt:(CZG—iezt+Sie—ielt_SZ_eielt)b7B a definite mass in the flavor vacuum is given by
+CS, (e f@t—e i aph_ +S,S (e Tal—gta! sirf 9y
o _ " p 2,=2,=8=— (3.10
+Csi(elelt_eflezt)az,

Apparently the condensate densities for particles with defi-
nite flavor in the mass vacuum, i.€0|N,)|0), are also
given by S. Let us now consider the number of particles

from which we can also obtain thenequaltime commuta-
tion relationships:

[a al 1=[b bt ] with a definite flavor in the flavor vacuum, for example,
artat Tt Z,(t)=(0'|N,(t)|0"). Using Eq.(3.6), one can easily show
:CZei 51t+ Siei Ezt_S%efiezt:Aaa, that
—_ /0’ iest _ A—iet\|a T
[ag,ak]=[b_g.bT 4] Z,()=(0"[[S;S_(e'?'—e " 2)b],
—C2eiet 4 Sﬁe‘flt— SZ_efielt:Aﬁ’B, + CS,(e'EZt—eilelt)biﬁ]T
X[S,S_(e'et—e leat)pT
[aB'aZt]:[aa’aLt] > |( t ieqt )T r )
+CS_(eeet—e Tatypt 70’ (3.11)
=[b_g.b" 1=[b_,.b 4] A
:CS+(ei52t_ei elt):Aﬁa, and thus
€1 te
[b_p.au]=[ag.b-ul Za(t)=4S§S§,sin2(ezt)+4S%C25in2(%t>
= _[bfava,Bt]* = _[aa!bfﬁt]* (312
_ iest _ A—iety — A—
=CS_ (e —e ') =Ag,, Similarly, we get for theB particles
[b_a’aat]:[aa’b_at]:S+S_(ei52t_e_i52t):A;a’ €1+ €
Zﬁ(t)=482_Sisin2(elt)+4S€C25in2(%t)

[b_g.ag]=[ag,b_g]=S,S_(e't'—e'1)=Ag,.
3.7

(3.13

We see that the number of particles with a definite flavor in
All other commutators are either zeros or can be expressed the flavor vacuum is indeed not zero. This is due to the fact

terms of the above ones. Equatiai3s3), (3.6), (3.7) in fact  that the flavor vacuum is not an energy eigenstate of the

define all the dynamics of Pontecorvo mixing for two quan-yamijltonianfi(9) and changes with the time translation pro-
tum fields. To show how these relationships can be used tgycing and destroying coherently virtual particle/antiparticle
calculate the dynamical parameters of the mikiateracting  pajrs. It shows a significant difference from the ordinary
fields, one can consider the time evolution of clustef  guantum mechanical treatment without considering the
defined in Sec. Il. As discussed in Sec. Il, however, this,zcyum effect, which yield&, 5 =0 for any time. We em-
cluster is invariant under th& ~*(6) transformation. Thus, phasize that our flavor vacuum here is not perturbative but
we can considef); with a particulark independently from  exact. This is different from the approach, where mass eigen-
all other momentum values. state vacuumO), , is used instead of the flavor vacuum to
We now calculate the number of particles with a definitegenerate a flavor eigenstate, elg,):aMO}lvz_ If the flavor
mass condensed in the flavor vacuum sf@t¢=[0), 5. Let  vacuum|0’) were replaced by the mass vacu{®, ,, then
us consider the condensation of the particle with a definitgye would have obtained; =Z,=0 instead of Eq(3.10. As
mass, for exampleZ;=(0’|N;|0"). Using the inverse rela- discussed above in the exact vacuum treatment, the mass
tion of Eq.(3.3: eigenstate vacuum is not annihilated &y ; operators. In-
) deed the term proportional ©©(y_) remains in the creation/
A =2 coSf— ﬂ( ag+y b)) 3.8 annihilation operators, so that the accuracy in the order of
1 G 2 VAT Y-D-p) ' O(»?%) can be expected from the results of the exact vacuum
approach compared to the perturbative vacuum approxima-
we can get tion. The densities of vacuum condensation for antiparticles
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Z17.Z, 5 are obtained the same as the densities for the comamically “rotating” flavor vacuum. As discussed in Ref.
responding particles, i.€Z,,,Z, s given by Egs.(3.10, [_9], the a— B conversion process generates the term propor-
(3.12, and(3.13. tional to
We now consider the flavor oscillations in time for a L e1— e
single particle with flavore and momentumk. In the sir? 5t
Fiesenberg picure, e average umber of parteles Wil fathe terms involvinge, + e €, < requencies in Eqi3.19
—aorf @)= 9 Y are, however, related to the creation of virtual pairs. For ex-
_ o 1 i ample, the virtual pair creation violates energy conservation
(Na(t))=(a|Na(t)| @) =(0"[a,258a8,(0"). (3.14 within the uncertainty time, i.eAEAt~1 (in our units#
n Eq. (3.14), te that the f ‘ =1) and thus both creation and annihilation of, let us say,
n = we note fhat we use the favor vacuum 0( + ) virtual pair must occur withinr~1/(e;+ €,) time
obtain the exact result for the flavor oscillations. Later, mlnterval Thus, the terms in Eq(3.16 involving e
1
Sec.. IV, we num_erlctally corEgp])ar(L-:'J t_he eéact (ge%ult(;vg)h the+ €,,€1,€, frequencies can be related to the creation of dif-
previous approximaté resu Sing EQS ferent types of virtual pairs, while the terms involvireg
(3.7), we directly apply the standard quantum field theoretic__ e, are related to the actual— 3 conversion.
method. Slnce the flavor vacuum is annlhllatedd@yﬁ, we Using Eq.(3.16, we can also calculate the expectation
the left most posmon to annihilate the flavor vacuum What_—

is left is uniquely determined by the unequal time commuta- B
i i i i €1— +e€
tion relations given by Eq3.7) and we find (Qa>=1—4CZSisinz( 1 12 ¢,
(@lNog @) =(0"|alianl0") +][aq k]| =Za+|Agal?, (3.17
, — +
(alN_la)=(0'[bT b 0"} +][a.b I (QB)=4CZSisin2(61262t)—4CZSZ_Sin2(61262t),
=Z.+|A% . .
or with the conventional parameters,
(alNgl a>=(0"|afag|0") +|[aq,afll*=Zs+ Azl €1—
g e S (Qa>=1—yisinz(2e)sir?( - 2t)
<a|N—Et|a>:<0'|biﬁtb—ﬁt|0’>+|[aaab—ﬁt]|2 .
. . o €1T €2
=Z 5+ |Agal2 (3.15 +72_SII’12(20)S|I’12( > t),
Using the notation ofC, S.., our results are summarized as €— €
<QB>=yisin2(2e)sin2( 5 t)
2q2 2 Q2
(@|Ny|a)=1+8C?S% st( > +8S% S sirf(est) L leite
— v siré(26)sir? >t (3.18
- 202 2
4C S+sm2( 2 t)’ From this result, one can also see that there is an additional

term proportional to sifi(e; + €,)/2t] to the usual Pontecorvo

formula. As discussed above, the origin of this term can be
+4? Sisinz(elt) understood as a contribution from the virtual pair creation in
“rotating” vacuum. The correction term is of the order of
O(¥?). As noted earlier, this may explain why it has been

€1 te
(a|NBt|a>=4CZSZSin2( C,

.o €17 €2 . . . .

+4CZSiS|rF( t|, found neither in an ordinary quantum mechanical treatment
2 nor in the approximate QFT treatment based on a perturba-

tive vacuum.
22 2 2 We also calculate the time evolution of the coherent state
(aN_Gila)=4C"SZ sir?| <2 2 +8SZSisir(et), for the two mixed quantum fields. The coherent state has the

form
— Cal l
(a|N_5|a)=8C2S2 smz( t]|+4S2 S sirP(egt). |Cay=e=2]07). (319

2 Extending the above calculation for a single patrticle, it is not

(3.16 so difficult to verify that the state containimgparticles with

As shown in Eq(3.16), the time dependence of the averageﬂavor a can be g|ven by

number of particles with a definite flavor is rather compli- = 2
cated. It contains oscillating contributions from both tie (n[Ngilm) = <0 |8ENa(22)"0") =(Nap) +nl Aqql?.
— B conversion and from the virtual pair creation in a dy- (3.20
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Besidesn|A,,|? which is simplyn times the probability of 15
a— « transition, we see in Eq3.20 that the condensate
contribution is present adding the densitycoparticles from
“rotating” vacuum. Applying this result directly to the co-
herent state expansion, we obtain the following expectation
|values of the number operatdl, s in the coherent state
Ca):

1.0

QandN

<Ca| Nat|ca>:Za+ |C|2|Aaa|2!
(Ca|Ng|Ca)=Zz+|C|?|Ag,|* (3.21)

Thus, the expectation values of the flavor charge operatol
Q(a.5)=N(a,p)~ N(-@ —p) turn out to be

0.0

_ 2 ] x‘ 57 x‘ =73 ;( =y 0
<Ca’|Qa|C(1>—|C| <Qa> 7.5x10 155?0 22.5x10 30x10
112l 12 . o[ €17 €2 FIG. 1. Comparing population density evolution f&e=0.1
|C| {1 y+sm2(2¢9)sm2( >t Gev.
+72_sin2(20)sin2<61+62t”, momentum is given bk=0.1 GeV. For a comparison, we
2 also show the previous approximate regitiin solid ling
5 based on the perturbative vaculij corresponding to these
(CalQg|Ca)=[C[Qp) quantities noting that @|N,|«) and (Q,) coincide with
e —e each other in this approximation as one can see in Bgkd
=|C|? yisinz(za)sinz( 12 zt) and (3.17. As we show in Fig. 1, the population density

(a|N,a) (thick solid line is completely distorted due to
€ +e H the interaction with the nonperturbative vacuum while the
1 2t

5 (3.22 sinusoidal Pontecorvo resulhin solid line is obtained for
the approximate perturbative vacuum treatment. We see the

As we can see in Eq3.22, the vacuum contributiong, , ~ 12rge deviation up to 40% ia|N,| @). However, one can-
are removed from the flavor charge expectation values angot See the same level of deviation(,) and the previous
the results for the coherent state are simjgy? times the result[9] based on the perturbative vacuum seems to be a

expectation values of the flavor charge for the single particl@°0d approximation for the description 02 flavor charge os-
state. cillations modulo the accuracy of ordéx(y<).

More details of our results on the time evolution of the
particle number with the momentuk=0.1 GeV are shown
in Fig. 2, where the thick solid and dashed lines are

We now apply the results for time evolution of two mix- (a|N,a) and (a|Ng|a), respectively, and the thin solid
ing boson fields to the analysis of the ' mixing system. and dotted lines are respectively the antiparticle contribu-
The masses are taken to be 549 MeV and 958 MeV, respetions of (a|Ny|a) and (a|Ng|a). The 7%’ is one of the
tively, and of course in the particle rest frame the energies in
our formulas reduce to the masses. The phenomenologicall’ 15
allowed mixing angle ¢sy)) range of thep»’ system is
given between—10° and —23° [15], where the mixing
angle s s, is defined by Eq(36) of Ref.[16]. This angle
represents the breaking of the &Jsymmetry, the eigen-
states of which are already rotated35.26° fromuu+dd
andssto a=uu+dd—2ssand 8=uu+dd+ss. Thus, our
mixing angle is defined by= 653)—35.26°. Recent analy-
sis of then#n’ mixing angle using a constituent quark model
based on the Fock states quantized on the light front can bc °5|
found in Ref.[16] and the references therein. The optimal
value found for fgyz was around—19° and thusé
~—54°, We use these values in Eq8.16 and(3.17) [or
equivalently (3.18] to determine the evolution of definite

- yzsinz(za)sinz(

IV. APPLICATION TO REAL MESON STATES

22.5x10%

flavor particle number and charge. ' 7.5x10% 15x10°*
In Fig. 1, we present botfw|N | «) (thick solid ling and
(Q,) (dotted line as a function of time when the particle FIG. 2. Population density evolution fée=0.1 GeV.
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FIG. 3. Flavor charge oscillations. k, GeV
most severely mixed systems due to the great difference in FIG. 4. Mixing amplitudes.

masses of mixed particles. As we have stated earlier, the

simple harmonic structure of average particle number usuallinteraction with the vacuum. The amount of distortion is of
obtained in quantum mechanics or in an approximate QF'E/Z_ order, i.e., about 10% for this case. An interesting feature
treatment[9] is completely altered as a result of nontrivial is, however, the presence of regions where the flavor charge
interaction with the complicated vacuum. What we see is thef a given sort of particles changes sign, which means that
superposition of two different cycles as described by Eqantiparticles outnumber the particles. The process can be
(3.16. From the initial moment of time the population of v sically understood as a result af« production when
both « particles (thick solid line and g particles (thick  {he number ofa particles is small due to the— g transi-
dashed lingincreases. Although the increase of numbegof o

particles in the system is well understood duexte- 8 con- It is also interesting and experimentally testable that the
version, the initial increase of the population is quite un-  efficiency of conversion processes and the flavor-vacuum
expected and caused lay o production from vacuum. The disturbance depend essentially on the energy of the original
contribution from this process, however, is rather fast so thaparticle. The dependence is effective to the relativistic mass
the general tendency of exchangiagand 8 particle states of particles so that the QFT-mixing effects are decreasing
can also be seen quite well. In Fig. 2, we also see the oscilwith the energy increase of the flavor particle. The distribu-
lations of the antiparticle number in the system. This effect igion of intensity for simple quantum mechanical mixing and
given in the order ofy®> and usually is absent in an approxi- QFT mixing is given by the relationship of amplitudes
mate QFT treatment. This is entirely a QFT effect whichy,(k), y_(k) which determine the intensity &, and biz
cannot be obtained within the framework of quantum me+terms ina, [see Eq.3.3]. In Fig. 4, we plot their depen-
chanics. In QFT, besides the beamsfand B particles  dence on the momentum of the emitiegbarticle. As we can
moving in thek direction, we necessarily have an antiparticlesee in Fig. 4;y, amplitude decreases kincreases and goes
beam traveling in the opposite direction. The population dento 2 ask—ce. In this limit, v, defines mixing due to a
sity in this beam is correlated with a particle beam so that théimple rotation betweem,; and a, states. Since it can be
total flavor is preserved. The existence of the beam is causesticcessfully computed within the framework of quantum
by “dynamically rotating” vacuum disturbance at the initial mechanics, it gives the usual Pontecorvo formula with only
time of thea particle emergence. One should also note thapne oscillatory term. On the other hand, appears with an
the existence of “recoil” antiparticle beam is preserved inantiparticle creation operator and describes the Bogoliubov
the more general wave-packet QFT treatment of the mixingotation betweem, andb_, states. This term is also respon-
problem. Thus, the mixed particle of definite flavor not only sible for (e;+ €,)/2 high frequency term and antiparticle
produces the usual oscillation of population density in timebeam creation. As we see in Fig. 4, it decreasds-as> and

(or spacd 17]) but also is accompanied by emitting the beamthe mass difference becomes washed out by the relativistic
of antiparticles traveling in the direction opposite to thegain of mass. This also means that at ultrarelativistic limit
beam of particles. These effects are in principle testable ithe QFT-mixing effects vanish so that the simple Pontecorvo
the experiments. formula is restored for flavor oscillation.

In Fig. 3, we also plot more details on the time depen- To demonstrate the energy dependence, we show in Fig. 5
dence of flavor charge expectation value with the same mahe plot of population densities evolving with time for the
mentumk=0.1 GeV. The thick solid and dashed lines arelarger momentunk=0.5 GeV. The line assignments are the
(Q,) and(Qp), respectively. One can see that they exhibitsame as shown in Fig. 2. As easily seen in Fig. 5, the inten-
mainly the simple periodic structure similar to the approxi-sity of the antiparticle beam decreases dramatically to about
mate QFT result§8,9] and only slightly distorted due to 10%/[in contrast to(20—40% in Fig. 2] of initial intensity.
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15 ‘ ‘ - mixing angle and also a nonzero massergy difference
between the two physically measurable mixed states. Dra-
matic small oscillations due to the virtual pair creation occur
in the exact vacuum analysis, while only simple sinusoidal
Pontecorvo oscillations occur in the perturbative vacuum
treatment. Some clarifying remarks on the Green function
method and the arbitrary mass parametrization discussed in
the previous literaturfl0,11,13 are also summarized in Ap-
pendix C.

As a physical application, we used our formulation to
analyze thep#n' system and found that the measured mixing
angle and mass difference betwegrand »" can be related
to the non-trivial flavor condensation in the vacuum. How-

YAV AYAYAVA VAR vAYAY ever, more fundamental questions such as the translation of
00T 7H0E  15x0® st s0®  the condensation in hadronic degrees of freedom to those in

quark and gluon degrees of freedom remain unanswered. The
FIG. 5. Population density evolution fér=0.5 GeV. answer to this question depends on the dynamics responsible

for the confinement of quark and gluon degrees of freedom

The initial increase in the population density fluctuation in@1d Perhaps has to rely on lattice QCD and/or some phenom-
particle beams also reduces even though the quantum mgnological quel that .accommodgte_s s.trongly Interacting
chanical simple oscillations withe{— €,)/2 frequency are _QCD' Furthgr Investigation along this Img is underway. Also,
still visibly distorted. Two beams nevertheless demonstratd Would be interesting to look at the mixing transformations
etween gauge vector bosons governed by the Weinberg

strong correlation of the same kind as the correlation in th X
quantum mechanical Einstein-Podolsky-Ro¢EPR para- angle in the electroweak theory as well as vector mesons

dox problem so that total flavor charge is preserved as ipUch @s the andw. While the statistics are the same as the
should be. It is also noticeable that there exist moments 0§calar and pseudoscalar bosons considered here, there will be

time when the antiparticle outnumbers the particle of theadditio_nal spin dependent interactions which complicate the
same sort thus producing a negative flavor charge as shovfH2!ysis.
in Fig. 3.
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the analysis replacing the perturbative vacuum to the nonper-
turbative (flavor) vacuum. Central to this analysis is the in-
terplay between the bas@inmixed Fock space and the APPENDIX A: COUPLED EQUATIONS FOR COMPUTING
physical Fock space. Their nontrivial relationship gives rise THE FLAVOR VACUUM STRUCTURE
to the mixing and oscillation phenomena. While the similar | this appendix, we summarize the procedure for deriv-
quantum field theoretic formulation was presented for fering Eq.(2.17) that describes a structure of the flavor vacuum.

mion mixing[8,10], as well as boson mixingL1], our analy-  \we first define flavor vacuum in terms of mass eigenstates as
sis differs in the derivation of the normalization factdr  the most general linear superposition of the form:

given by Eq.(2.29 which is crucial to show the unitary

inequivalence between the mass vacuum and the flavor

vacuum. We presented a new algebraic method which is dis- 0;6)= 2 Crimid 0)(a‘£)n(a;)l(btl)m(btz)k|o>
n,

tinct from the conventional method of using a differential I mk
equation forZ. While the unitary inequivalence occurs only ,
in the infinite volume limit even for the boson case as dis- 2 Chimi( 0) t NP TNk
. . n for the ¢ = > (@)@ (b )M(bT ¥ 0).
cussed in Ref[11], we find an intrinsic difference between nimk ni! 1
the fermion and boson cases. As shown in this work, the (A1)

normalization factorZ for the boson given by Eq2.25 has

a singularity on the complex plane @t sin 6=2i while the

corresponding result for the fermion does not have any sinThen, using the definition of flavor vacuum
gularity. As we summarized in Appendix B, this singularity

corresponds to the divergence of the Taylor series expansion a, 40:6)=0

in powers of@ for the regiony_#>2. For both the boson @Bl ’

and fermion cases, however, the non-trivial observable mix-

ing phenomena cannot occur unless there is both a nonzero b_, -50;6)=0, (A2)
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and the explicit expression for the ladder operators given by
Eqg. (3.3, one can derive an infinite set of linear equations

for Cpym coefficients: Cni+1mk=Z2Cnimk— 1+ Z21C i m—1k- (A5)

! — ’ !
Clns1ymk=Z12Cnimk—1T211C nim-1k

CC hitmktSiClnii1mktS-Chimk—1=0, One also can write this in a symbolic manner introducing a
' Y ' kind of shifting operator with definition

cc’ -S,.C’ +S_C'im-1x=0, A
n,l+1mk + n+1/mk nl,m—1k kCr/nmk:Cr/ﬂm,k—la

n,l,mk=0,1,23, ... . (A3) e s, (46)

To solve this infinite set of equations, we can expressyjim the use of Eq(A6), Eq. (A5) may be rewritten as
C'ns1imksC i+ 1kmin terms ofC' 1y, Chym k-1 SO that

we step by step reduce timet| number of particles. Denot- C'n+1,|mk=(212R+ ZymMCl i
ing i X
=(Zyk+Z3m)2C = - - -
Zip Iy cC s\t . A
Zyy Zp =S -S, C (Ad) C' i+ 1mk= (Z2oK+ZoM) C i
=(Zook+Zpm)?C o ymi= -+, (A7)

(notation forZ is chosen in correspondence to the index of
particle type, we can write this relationship as and finally it can be written as

n
Cr’,lmkz(212R+zllﬁw)”(zzzk+221r‘n)'c'om=( > > c{?’c}’zlml’zgzm’z;’lz'zzt’&n“<m’“’>r“nm’“’)c'00mk.
m'=01t'=0

(A8)

One should note that, since total momentum of vacuum  APPENDIX B: PERTURBATIVE EXPANSION IN @

states should be zerG, gon =0 unlessn=k=0. Therefore, FOR THE FLAVOR VACUUM
in Eq. (A8) only terms withm’+t"=m,n+I—(m’+t’)
=k must survive and from Eq.A4) we get Zy;= In this appendix, we try to directly estimate the norm of

—Z22,215=Z 10 find the flavor vacuum stat&~(6)|0)=exp(— 69)|0) using the

perturbative expansion in powers @éf and show that the
N perturbative calculation of the flavor vacuum state is indeed
L - U . impossible for large y_6. Truncating the series for
|0,¢9>=an0 mE:O n!nllr!n(abn(a;)'(bil)m(btz)nﬁ7m|0>’ G‘p1(9)|0> to theN tgrmé, we have the tgerm with the largest
' (A9)  humber of particles coming fromy( /2)(ajb’ ,+aib’,) in
the (— Hé)’\'. Thus, the truncated series@ﬁ1(0)|o> can be
where written as

Bum= S Ol ZL™ Zi (<)

m it =m . 1( y_o\"
o=m’ < GNl(e)|o>=x+m(—T (alb™ ,+alb’ ))N0)
o<t'=n :

(A10)

1 y- 0\ natynept TyN-
N _ | =X+ 17| =5 2 CRlaD (bl (@M "
Using a direct expansion, one can also verify that the above N! A

expression for the vacuum state is equivalent to _
P q X (b )N""0), (B1)

1
:Z I Z Tt +Z Tt n . .
10.6) ; nijr (41181P- 1+ 21231075 whereX denotes all terms with the total number of particles

fot N and antiparticles less thanN\2 For the norm of the above
X (—Zyagb’ +Z53b7 )']0). (A11l)  expression we can then write
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,)/70 2N 1
2 N!2
N
X > ninl(N=n)!(N—n)!
n=0

,)/70 2N
SR

Thus wheny_6>2 the norm of thd0,6)= Gy *(6)|0) is

IGN (0)[0)12=1X]?+

N!2

n'2(N—n)!?

=[IX]|*+(N+1) (B2)

PHYSICAL REVIEW D 64 076004

related to the pole aE=(0|0,0) on the complex plane of.
Here, the pole(critical) value is given byy_sinhgitical)
=2.

APPENDIX C: REMARKS ON THE GREEN FUNCTION
METHOD AND THE ARBITRARY MASS
PARAMETRIZATION

1. Green function method

We note that a straightforward use of the Green function

growing as the number of terms kept in the expansion of th&ith the conventional definition( 0| T[#/(x) #/(y)1|0) en-
G(6) grows and therefore the transformation operatorcoumers some difficulties in the mixing analysis due to the

Ggl(a) is not a well defined operator in the mass-eigenstat

Fock space.
One may also try to check directly the
G(0)G 1(6)=1. In this type of approach one defines

N &\n
G(6)= lim Gy(0)= lim > (6-37

N— o0 N—own=0 n!

(B3)

Then, one shall prove that lim...[|Gn(6) Gy 1(6)—1] =0,

i.e., limy_.|(Gn(0)GNY(60)—1)|x)|=0 for any mass-
eigenstate statx) if G(6) is well defined. When multiply-
ing Gy(6) andG,]l(a) one typically get all coefficients van-

ished till the power ofN and then have a “tail” up to th&N

identity

dact that the flavor vacuum state is not stationary in time

[10,0)(t)#]0,0)(t")]. The conventional Green function can-
not be adopted without specifying at which times the flavor
vacua were taken in the inner product. In fact, the most ob-
vious generalization of the Green function as the overlap
between the states created at timésand y° [i.e., G(«
— B;x%,y%) =(0y°| T[ #51,.]|0x°)] breaks down due to the
unitary inequivalence of the flavor Fock spaces at different
times. Therefore, some sort of modification, such as parallel
translation of states to the same time, shall be needed to
define the Green function appropriate in the mixing analysis.
The flavor mixing problem can then be treated using this
modified propagation functions as discussed in the previous
literature[10].

In the process of our calculations we also noticed that

coefficient. If G(0) is well defined, this tail is expected to some entities indeed appeared as “transition” amplitudes

vanish whenN is taken to infinity. However, this does not from one state to another. For examp(Bl,)=Z,+|A

110(|2

always happen in the perturbative expansion. To demonstraigan be considered as superposition of “vacuum rotation”
this one may consider the last term of the “tail” given ex- packground contributiorz,, and contribution froma— a

actly by S?N/(NIN!). Recalling thatS generator contains

transition withA ,, transition amplitude. In this manner, one

(y_12)(alb' ,+alb’ ;) combination, we can write the state can introduce the Green function that only accounts for the

(GNGy1—1)|0) as
B (6y )N &
(GNGrI-1)[0)=Y+ ST 2}0 Chy(ahi(b® )t

X (a;)ZN—t(btl)2N—t|0>1

(B4)

whereY denotes all states with less theN /iumber of par-

ticles and antiparticles. The norm of this state is then give

by

(GG —1)[0)

1 y_ 2N 2N
=IIYIIZ+W<T) t:EO(cgN)Zt!t!(zlxl—t)!
2N
X (2N—1)!)(2N+1) %ﬁ) . (B5)

Again wheny_6>2 the above expression is not convergent
and theG ()G~ 1(6) expression is in fact not well defined in

terms of mass-eigenstate fields.

For small values of, however, the perturbative expan-

n

transition amplitude without the vacuum contribution. In this
way the Green functiont0) can be defined by
Gaa(X1:y,00=(0" e (X, el(y,0[0"),  (CD
where the vacuum state is taken at gbyt certain fixed
time, for exampleé =0, and this coincides with the definition
given in[10]. We note that at=0 the modified Green func-
tion is proportional to the delta function in the position space
and thus it vanishes in the spacelike region. Also, the modi-
fied Green function satisfies the same field equation that the
field operators satisfy eventiis not zero. Thus, to the extent
that the field equations satisfy the causality, the modified
Green function satisfies the sarhEor the propagator with a

definite momentunﬁ, we then obtain
G oK t) =A% (K1),

Gap(k,) =A%, (K1), etc. (C2

1See Ref[18] for the discussion of causality that the Green func-

sions are indeed convergent and the radius of convergencetisn should satisfy.
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Equation(3.7) then allows to define the propagation func- which is obviously dependent on the choice of basis, e.g.,
tions for any kind of transition. changes with rotation if(a;,a,)-(b4,b,)} plane. Such ar-

We should note, however, that treatment with such abitrariness is completely avoided in the exact vacuum treat-
modified Green function does not cover all the variety of thement because the normalization of the flavor state is given by
effects in the mixing problem. In particular the condensateunity no matter what mass basis is used.
contribution Z,,, which can be related to the unitary in-  However, the clain{11,13 that the number expectation
equivalence of the flavor Fock spaces at different times, isalues are not physical because they do depend on the arbi-
lost so that this part of the problem is missing when thetrary mass parameters cannot be correct. As a counter ex-
above approach is taken. Nevertheless, the Green functiaample to such claim, one can consider a very specific case of
method is useful in calculations of flavor-operator expectathe mixing problem, namely, when the mixing is absent
tion values, scattering amplitudes and other quantities ifiG(6#)=1]. As we discuss below, applying such a claim

which the vacuum contributio# cancels out. [11,13 to this specific example leads to a conclusion that
cannot be correct. With no mixing, we are dealing with noth-
2. Arbitrary mass parametrization ing else but a free-field problem where the particle number

() =al(ta; i -
In this sub-appendix, we remark on the arbitrary massqperat?m'(lj) _a' (t)g,(t)Tand ;hf partlcllg pumber expgcta
parametrizatiori11,13 in the mixing problem. As discussed tlr?nfva u_e( ) =l{a )b’ai (t)l}lld(fqr s(;mﬁm[ty \ﬂ'e ans' e{)l
in Ref.[13], one may treat the flavor fields that were initially the termion casemust be well-defined physically observa e
written as quantities. However, when we apply the transformation

given by Eq.(C5 and compare directly EqC3) and Eq.
dk (C4), we observe that
o |

(ZT):B/Z[Uk,iak,i(t)+U—k,ib1k,i(t)]eikxv (€3 b e
ek

=~ ety (Tt
a;= (U Uy )agie "'+ (U v_y;)b

equally well in an arbitrary mass basis, i.e., :pkak’iefiekvit_i_)\kbik’ieiek'it (C6)
dk - ~  Ff ikx d
o= W[Uk,iak,i(t)+Ufk,ib7k,i(t)]e , (C4 an

U > i f . N = a ,ET t 2_ Ze*ifk,i1+ A\ Zeifk,it 2,
whereu, ; anduvy; are free-field amplitudes with some new (N =l{ai.a/ (O} =llpd M | 7
arbitrary masses. Since there is no physical reason to prefer
one form over the other, Reff13] and then Ref11] c_Ialmed_ where we follow the notations in Refdl1,13. In the case of
that no arbitrary mass parameters should appear in physicallyae fields the number expectation value does depend on the

o.b_servablel quantities, i.e., they sh_aII be invariant under Specirbitrary mass parameters and thus following the above
cific Bogoliubov transformation going from E¢C3) to EQ. . 15im one may conclude th&N;) is not a physically mea-

(C4 [11] surable quantity. However, this cannot be correct because
~ both the particle number operator and the number expecta-
3(t) :J—l(t)( ai(t))J(t) (C5) tion value in the free-field problem are well-defined physical

Ei"(t) biT(t) ' observables. We view the above inconsistency as follows.
The transformation given by EQC5) is in fact nothing else
It is true [11,13 that the perturbative vacuum treatment but a redefinition of the particle states, so that the tilde quan-

[8,9] yields the normalization of the flavor state not as unitytities correspond to some new quasiparticle objects and the

but as some constant that depends on the arbitrary mass paumber operator now describes the number of a different

rameter. In particular, Eq3.3) can be viewed as an expan- type of particles than before. Therefore, the number operator

sion of the flavor ladder operator in some basis constructedverage shall not be expected to be the same in such trans-
from the free-field ladder operators. Then, the normalizatiorformations. Indeed, it should change in some covariant and

of the one-particle state in perturbative vacuum treatrf@nt self-consistent manner instead of being invariant under such

was given only by théS_|? coefficient at theb’{y2 operator, a redefinition.
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