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Nonperturbative vacuum effect in the quantum field theory of meson mixing
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~Received 27 April 2001; published 5 September 2001!

Replacing the perturbative vacuum by the nonperturbative vacuum, we extend a recent development of a
quantum field theoretic framework for scalar and pseudoscalar meson mixing. The unitary inequivalence of the
Fock space of base~unmixed! eigenstates and the physical mixed eigenstates is investigated and the flavor
vacuum state structure is explicitly found. This is exploited to develop formulas for two flavor boson oscilla-
tions in systems of arbitrary boson occupation number. We apply these formulas to analyze the mixing ofh
with h8 and comment on the other meson-mixing systems. In addition, we consider the mixing of boson
coherent states, which may have future applications in the construction of meson lasers.
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I. INTRODUCTION

The study of mixing transformations plays an importa
part in particle physics phenomenology@1#. The standard
model incorporates the mixing of fermion fields through t
Kobayashi-Maskawa~CKM! @2# mixing of 3 quark flavors, a
generalization of the original Cabibbo@3# mixing matrix be-
tween thed and s quarks. In addition, neutrino mixing an
oscillations are the likely resolution of the famous solar n
trino puzzle@4#. In the boson sector, the mixing ofK0 with

K 0̄ via weak currents provided the first evidence ofCP vio-

lation @5# and theB0B̄0 mixing plays an important role in
determining the precise profile of a CKM@2,3# unitary tri-
angle@6# in Wolfenstein parameter space@7#. Theh h8 mix-
ing in theSU(3) flavor group also provides a unique oppo
tunity for testing QCD and the constituent quark mod
Furthermore, the particle mixing relations for both the f
mion and boson case are believed to be related to the
densate structure of the vacuum. The non-trivial nature of
vacuum is expected to hold the answer to many of the m
salient questions regarding confinement and the symm
breaking mechanism.

The importance of the fermion mixing transformatio
has recently prompted a fundamental examination of th
from a quantum field theoretic perspective@8#. A similar
analysis in the bosonic sector has also been undertaken@9#.
However, more recent analysis@10# of the fermion mixing
indicated that the previous result@8# based on the perturba
tive vacuum is only an approximation with respect to t
exact one based on the nonperturbative~flavor! vacuum. In
this work, we show that the same is true for the boso
sector. Upon the completion of our work, we notice that
same conclusion was also drawn in recent literature@11#. In
our work, however, the orthogonality between mass and
vor vacua is shown in a straightforward algebraic meth
rather than solving a differential equation for the inner pro
uct of two vacua as presented in@11#. As evidenced in the
previous literature@8,10–12#, the method of using a differ
ential equation to prove the unitary inequivalence betw
the two Fock spaces has been known for some time and
algebraic method is a new development in this resp
Moreover, we analyze the structure of the nonperturba
0556-2821/2001/64~7!/076004~13!/$20.00 64 0760
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flavor vacuum in a great detail contrasting to the fermi
case. The details of flavor vacuum, its perturbative expans
in the mixing angle, and also some clarifying remarks on
Green function method and the arbitrary mass parametr
tion are summarized in the accompanying Appendices.

We begin in Sec. II with investigation of the vacuu
structure using the relation between the base eigenstate
the physical mixed-eigenstate fields. We derive the repres
tation for the Pontecorvo mixing transformation for the b
son case and explicitly calculate the flavor vacuum st
structure in the quantum field theory~QFT!. We then inves-
tigate the unitary inequivalence of the two Fock spaces
one is the space of mass eigenstates and the other is the
of flavor eigenstates. In Sec. III, the ladder operators
constructed in the mixed basis. These are used to derive
dependent oscillation formulas for 1-boson states,n-boson
states, and boson coherent states. Consequences from t
placement of the perturbative vacuum by the exact nonp
turbative ~flavor! vacuum are demonstrated. Section IV
devoted to study specific cases in our formalism, such as
hh8 system. We show the numerical differences between
two results: one from the perturbative vacuum and the ot
from the nonperturbative vacuum. Conclusions and disc
sions follow in Sec. V. In Appendix A, we present a deriv
tion of an explicit expression for the flavor vacuum operati
the ladder operators of particle and antiparticle to
vacuum of mass eigenstates. In Appendix B, we discuss
region of validity for a perturbative expansion of the flav
vacuum. In Appendix C, we make some clarifying remar
on the Green function method and the arbitrary mass par
etrization discussed in recent literature@10,11,13#.

II. THE MIXING RELATION AND VACUUM STRUCTURE

We start our analysis by considering the Pontecorvo m
ing relationship@14# for two fields:

fa5cosuw11sinuw2 ,

fb52sinuw11cosuw2 , ~2.1!

wherew1,2 are the free fields with definite massesm1,2 and
fa,b are the interacting fields with definite flavorsa, b,
©2001 The American Physical Society04-1
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respectively. The above mentioned relationship natur
arises by considering the mixing problem for the two qua
tum fields with the Lagrangian of the form

L5L0,a1L0,b2l~fa
†fb1fb

†fa!, ~2.2!

where L0,a(b) are the free flavor-field Lagrangians@i.e.,
L0,a(b)5

1
2 (]fa(b)

† ]fa(b)2ma(b)
2 fa(b)

† fa(b))] and l is the
coupling constant responsible for mixing. It is straightfo
ward to show that the above Lagrangian can be immedia
diagonalized by the transformation given by Eq.~2.1! with
an appropriate choice of mixing angleu @10#. The param-
eters of the diagonalized Lagrangian can then be expre
in terms of flavor-field masses (ma ,mb) and interaction con-
stant (l); i.e.,

tan~2u!5
24l

ma
22mb

2
~2.3!

and

m1,2
2 5

~ma
21mb

2 !6A~ma
22mb

2 !2116l2

2
. ~2.4!

The free mass fieldsw1,2 can be written explicitly as
usual:

w i5(
kW

1

A2e i~k!
~ukW iakW ie

2 ikx1vkW ibkW i
†

eikx!, ~2.5!

where akW i and bkW i are respectively the particle and an
particle ladder operators for the free mass fields and t
satisfy the standard equal-time commutation relationship

@akW i ,akW8 i 8
†

#5dkW ,kW8d i ,i 8 ,

@bkW i ,bkW8 i 8
†

#5dkW ,kW8d i ,i 8 . ~2.6!

Here,kx5k0x02kW•xW ande i(k)5k0(k)5AkW21mi
2. For the

spin-0 case, free mass-field amplitudesukW i and vkW i are just
numbers, i.e.,ukW i5vkW i51. The interacting flavor fields given
by Eq.~2.1! are the solutions of the Euler-Lagrange equat
for Eq. ~2.2! and therefore can be completely determined
terms of the two free spin-0 fields given by Eq.~2.5! and the
mixing angleu.

This, however, gives rise to a highly nontrivial relatio
ship between the Fock space of free fields and that of in
acting fields. To build the Fock space of flavor eigenstates
consider the representation of the transformation consis
with Eq. ~2.1! in the Fock space of mass eigenstates. Us
the Baker-Hausdorff lemma, we can write the generator
this transformation as
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Ŝ5E d3x@ḟa
†~x!fb~x!1fb

†~x!ḟa~x!

2ḟb
†~x!fa~x!2fa

†~x!ḟb~x!#

5E d3x@ẇ1
†~x!w2~x!1w2

†~x!ẇ1~x!

2ẇ2
†~x!w1~x!2w1

†~x!ẇ2~x!# ~2.7!

so that Eq.~2.1! can be written in the form

fa5e2 iŜuw1eiŜu,

fb5e2 iŜuw2eiŜu ~2.8!

with the transformation operator given by

G~u!5eiŜu. ~2.9!

The similarity transformation given by Eq.~2.8! relates the
free field operatorsw1,2 to the interacting fieldsfa,b . These
relationships can be obtained from the requirement of
inner product conservation

^aufub&5^auwub&, ~2.10!

where a linear transformation of state vector according to

ua&5G21~u!ua& ~2.11!

relates the two Hilbert spaces, i.e., mass-eigenstate s
H1,2 and flavor-eigenstate spaceHa,b5G21(u)H1,2. The
transformation given by Eq.~2.8! can also be viewed as th
‘‘rotation’’ of basis in the Hilbert space of quantum stat
diagonalizing the bilinear Lagrangian given by Eq.~2.2!.

The operatorŜ can then be written in terms of ladde
operatorsakW i andbkW i as follows:

Ŝ5(
kW

i

2
$g1~akW1akW2

†
1b2kW1b

2kW2
†

2akW1
†

akW22b
2kW1
†

b2kW2!

1g2~akW1b2kW21akW2b2kW12akW1
†

b
2kW2
†

2b
2kW1
†

akW2
†

!%,

~2.12!

where we denoteg15Ae1(k)/e2(k)1Ae2(k)/e1(k) and
g25Ae1(k)/e2(k)2Ae2(k)/e1(k). Hereg1

2 2g2
2 54. From

Eq. ~2.12! we note that Eq.~2.8! makes each clusterVkW ,
defined by linear superposition of operato
(akW1 ,akW2 ,b

2kW1
† ,b

2kW2
† ), transform into itself, i.e.,

e2 iŜuVkWe
iŜu5VkW . The same can be said about its Hermiti

conjugateVkW
† . This means that we can consider the transf

mation given by Eq.~2.8! within each cluster with a specific
momentumkW :
4-2
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ŜkW5
i

2
$g1~akW1akW2

†
1b2kW1b

2kW2
†

2akW1
†

akW22b
2kW1
†

b2kW2!

1g2~akW1b2kW21akW2b2kW12akW1
†

b
2kW2
†

2b
2kW1
†

akW2
†

!%.

~2.13!

Thus, the total transformation is given byeiŜu5)kWe
iŜkWu. It is

also convenient to expressŜkW as ŜkWªA2(T̂kW
†
1T̂kW) with the

operatorT̂kW defined by

T̂kW52
i

2A2
@g1~akW1

†
akW22b2kW1b

2kW2
†

!

1g2~akW1
†

b
2kW2
†

2akW2b2kW1!#, ~2.14!

where the commutation relation@ T̂kW ,T̂kW
†
#51 is satisfied be-

tweenT̂k and T̂k
† just the same way as the particle creati

and annihilation operators satisfy the commutation relatio
With the operatorsT̂k and T̂k

† , we can directly apply Eq
~2.9! to the mass-eigenstate vacuum and obtain

u0;u,kW &a,b5 (
n50

`
~2 iuA2!n

n! (
l 50

n

Cn
l ~u!~ T̂kW

†
! l T̂kW

n2 l u0&1,2,

~2.15!

whereCn
l (u) are the generalized binomial coefficients th

can be found after appropriate orderings ofT̂ and T̂† are
carried out. In the expression given by Eq.~2.15!, one can
treat the operatorsT̂kW (T̂kW

†) as the annihilation~creation! op-
erator of the vacuum fluctuation.

For simplicity we now suppress the momentum notat
in the ladder operators and take the flavor vacuum stat
the most general form

u0;u&5 (
n,l ,m,k

Cnlmk~u!~a1
†!n~a2

†! l~b21
† !m~b22

† !ku0&.

~2.16!

Applying the flavor annihilation operators to this vacuu
we obtain an infinite number of coupled linear equations
the coefficientsCnlmk(u) and solve these equations in Ap
pendix A. As shown in Appendix A, we find

u0,u&5Z(
n,l

1

n! l !
~Z11a1

†b21
† 1Z12a1

†b22
† !n

3~2Z11a2
†b22

† 1Z12a2
†b21

† ! l u0&, ~2.17!

whereZ5^0u0,u& is the normalization factor to be fixed b
^u;0u0;u&51 and the coefficientsZ11 andZ12 are given by
07600
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Z115
g1g2sin2u

4S cos2u1
g1

2

4
sin2u D 5

g1g2sin2u

4S 11
g2

2

4
sin2u D ~2.18!

Z125
2g2sin 2u

4S cos2u1
g1

2

4
sin2u D 5

2g2sin 2u

4S 11
g2

2

4
sin2u D .

Here, we note that the coefficientsZ11 and Z12 @see Eq.
~2.18!# can be written as

Z115x•x, Z125x•y, ~2.19!

where

x5
g2sinu

2A11
g2

2 sin2u

4

x5
g1sinu

2Acos2u1
g1

2 sin2u

4

y5
2cosu

Acos2u1
g1

2 sin2u

4

. ~2.20!

Thus, the flavor vacuum state given by Eq.~2.17! can be
rewritten as

u0,u&5Z(
n,l

xn1 l

n! l !
~xa1

†b21
† 1ya1

†b22
† !n

3~2xa2
†b22

† 1ya2
†b21

† ! l u0&. ~2.21!

This result can be further reduced as

u0,u&5Z(
n,l

xn1 l

n! l !
~a1

†c1
†!n~a2

†c2
†! l u0&, ~2.22!

by defining new ladder operators

c15xb211yb22 ,

c252xb221yb21 , ~2.23!

where it is easy to check that@c1 ,c1
†#5x21y251, @c2 ,c2

†#
51, @c1 ,c2

†#50. Now, it is possible to compute directly th
value ofZ, because

^0,uu0,u&5Z2(
n,l

x2(n1 l )

n! 2l ! 2
n! 2l ! 25Z2S (

n
x2nD 2

5
Z 2

~12x2!2

~2.24!
4-3
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and the flavor vacuum is normalized to be 1, i.e.,^0,uu0,u&
51. Thus, we find

Z512x25
1

11g2
2 sin2u/4

. ~2.25!

We see that the flavor vacuum state indeed exists in the F
space of mass eigenstates and the normalization factorZ is
finite but less than 1 for any value ofg2sinu in the exact
vacuum treatment. The same has been obtained in Ref.@11#
solving a differential equation of̂ 0u0,u&5^0uG(u)u0&.
While such method of derivation using a differential equ
tion has been known for some time@8,10–12#, our algebraic
method presented in this work is a new development.

This proves then the unitary inequivalence between
two Fock spaces of mass and flavor in the infinite volu
limit following the procedure discussed in Ref.@11#:

lim
V→`

^0u0,u&a,b5 lim
V→`

expS V

2p3E d3k ln ZD 50,

~2.26!

for any time. While we agree with Ref.@11# on the point that
only the infinite volume limit can warrant the unitary in
equivalence even in the boson case, we note that the pe
bative expansion of the exact vacuum in the boson cas
dramatically different from the case of the fermion. Althou
the normalization factorZ is a finite function for all values
of g2sinu, we observe that this expression given by E
~2.25! has singularity on the complex plane atg2sinu52i.
This is in remarkable contrast from the fermion case wh
the corresponding resultZf ermion512g2

2 sin2u/4 does not
have any singularity on the complex plane. Thus, the fla
vacuum u0,u& in terms of series inu shall have a critical
point and this would result in the divergence of the Tay
series expansion for̂0u0,u& in powers ofu because such
expansion only makes sense for smallu values. As we ex-
plicitly show in Appendix B, the series given by Eq.~2.15! is
indeed divergent in the regiong2u.2. Such divergence
does not occur in the fermion case. We also present s
clarifying remarks in Appendix C regarding the Green fun
tion method and the aribitrary mass parametrization d
cussed in the previous literature@10,11,13#.

III. LADDER OPERATORS AND CONDENSATIONS

In the previous section, we have built the representa
of the mixing transformation given by Eq.~2.1! in the opera-
tor space ofw1,2, where the action of mixing is given by th
similarity transformation given by Eq.~2.8!. We also consid-
ered the representation defined by operatingG21(u) in the
Fock space and showed the unitary inequivalence betw
the two ~mixed and unmixed! Fock spaces in the infinite
volume limit.

Let us now further investigate these representations
come up with physically measurable quantities. The fie
w1,2 are defined by a superposition of ladder operatorsa1,2
andb1,2 that form the basis in a linear Hilbert space of ma
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eigenstate fields. Using Eqs.~2.5! and ~2.8!, one can imme-
diately obtain annihilation operators for the mixed~flavor!
fields that are consistent with the Pontecorvo mixing re
tionship,

aa,b5G21~u!a1,2G~u!, ~3.1!

ba,b5G21~u!b1,2G~u!.

This is also consistent with the definition of flavor vacuum
the lowest energy state, i.e.,

^0,uuĤ~u!u0,u&5^0uG~u!Ĥ~u!G21~u!u0&5^0uĤ0u0&50,
~3.2!

whereĤ(u) andĤ0 are the Hamiltonians of mixed fields an
unmixed fields, respectively. Straightforward application
the Baker-Hausdorff lemma to Eq.~3.1! yields

aa5a1cosu1
sinu

2
~g1a21g2b22

† !,

ab5a2cosu1
sinu

2
~2g1a11g2b21

† !,

b2a5b21cosu1
sinu

2
~g1b221g2a2

†!,

b2b5b22cosu1
sinu

2
~2g1b211g2a1

†!. ~3.3!

It is also not difficult to reverse Eq.~3.3! in order to obtain
how the mass-eigenstate ladder operators are express
terms of flavor ones. Using the above relationships we
also find the time dependence of the flavor-eigenstate lad
operators in the Heisenberg picture since the time evolu
of mass-eigenstate ladder operators are given by

a1,2~ t !5eiĤ 0ta1,2e
2 iĤ 0t5e2 i e1,2ta1,2,

b1,2~ t !5eiĤ 0tb1,2e
2 iĤ 0t5e2 i e1,2tb1,2. ~3.4!

In particular, after introducing more compact notation

C5cosu, S15
sinug1

2
, S25

sinug2

2
, ~3.5!

we find

aat5~C2e2 i e1t1S1
2 e2 i e2t2S2

2 ei e2t!aa

1CS1~e2 i e2t2e2 i e1t!ab1S1S2~ei e2t2e2 i e2t!b2a
†

1CS2~ei e2t2e2 i e1t!b2b
† , ~3.6!

abt5~C2e2 i e2t1S1
2 e2 i e1t2S2

2 ei e1t!ab

1CS1~e2 i e2t2e2 i e1t!aa1S1S2~e2 i e1t2ei e1t!b2b
†

1CS2~ei e1t2e2 i e2t!b2a
† ,
4-4
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b2at5~C2e2 i e1t1S1
2 e2 i e2t2S2

2 ei e2t!b2a

1CS1~e2 i e2t2e2 i e1t!b2b1S1S2~ei e2t2e2 i e2t!aa
†

1CS2~ei e2t2e2 i e1t!ab
† ,

b2bt5~C2e2 i e2t1S1
2 e2 i e1t2S2

2 ei e1t!b2b

1CS1~e2 i e2t2e2 i e1t!b2a1S1S2~e2 i e1t2ei e1t!ab
†

1CS2~ei e1t2e2 i e2t!aa
† ,

from which we can also obtain theunequal-time commuta-
tion relationships:

@aa ,aat
† #5@b2a ,b2at

† #

5C2ei e1t1S1
2 ei e2t2S2

2 e2 i e2t5Aaa ,

@ab ,abt
† #5@b2b ,b2bt

† #

5C2ei e2t1S1
2 ei e1t2S2

2 e2 i e1t5Abb ,

@ab ,aat
† #5@aa ,abt

† #

5@b2b ,b2at
† #5@b2a ,b2bt

† #

5CS1~ei e2t2ei e1t!5Aba ,

@b2b ,aat#5@ab ,b2at#

52@b2a ,abt#* 52@aa ,b2bt#*

5CS2~ei e2t2e2 i e1t!5Ab̄a ,

@b2a ,aat#5@aa ,b2at#5S1S2~ei e2t2e2 i e2t!5Aāa ,

@b2b ,abt#5@ab ,b2bt#5S1S2~e2 i e1t2ei e1t!5Ab̄b .

~3.7!

All other commutators are either zeros or can be expresse
terms of the above ones. Equations~3.3!, ~3.6!, ~3.7! in fact
define all the dynamics of Pontecorvo mixing for two qua
tum fields. To show how these relationships can be use
calculate the dynamical parameters of the mixed~interacting!
fields, one can consider the time evolution of clusterVkW

defined in Sec. II. As discussed in Sec. II, however, t
cluster is invariant under theG21(u) transformation. Thus
we can considerVkW with a particularkW independently from
all other momentum values.

We now calculate the number of particles with a defin
mass condensed in the flavor vacuum stateu08&5u0&a,b . Let
us consider the condensation of the particle with a defi
mass, for example,Z15^08uN1u08&. Using the inverse rela
tion of Eq. ~3.3!:

a15aacosu2
sinu

2
~g1ab1g2b2b

† !, ~3.8!

we can get
07600
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e

Z15^08ua1
†a1u08&5

sin2ug2
2

4
^08ub2bb2b

† u08&. ~3.9!

One can show that the same result is true forZ2
5^08uN2u08&. Thus, the condensate density of particles w
a definite mass in the flavor vacuum is given by

Z15Z25S2
2 5

sin2ug2
2

4
. ~3.10!

Apparently the condensate densities for particles with d
nite flavor in the mass vacuum, i.e.,^0uNa(b)u0&, are also
given by S2

2 . Let us now consider the number of particle
with a definite flavor in the flavor vacuum, for exampl
Za(t)5^08uNa(t)u08&. Using Eq.~3.6!, one can easily show
that

Za~ t !5^08u@S1S2~ei e2t2e2 i e2t!b2a
†

1CS2~ei e2t2e2 i e1t!b2b
† #†

3@S1S2~ei e2t2e2 i e2t!b2a
†

1CS2~ei e2t2e2 i e1t!b2b
† #u08& ~3.11!

and thus

Za~ t !54S2
2 S1

2 sin2~e2t !14S2
2 C2sin2S e11e2

2
t D .

~3.12!

Similarly, we get for theb particles

Zb~ t !54S2
2 S1

2 sin2~e1t !14S2
2 C2sin2S e11e2

2
t D .

~3.13!

We see that the number of particles with a definite flavor
the flavor vacuum is indeed not zero. This is due to the f
that the flavor vacuum is not an energy eigenstate of
HamiltonianĤ(u) and changes with the time translation pr
ducing and destroying coherently virtual particle/antiparti
pairs. It shows a significant difference from the ordina
quantum mechanical treatment without considering
vacuum effect, which yieldsZa(b)50 for any time. We em-
phasize that our flavor vacuum here is not perturbative
exact. This is different from the approach, where mass eig
state vacuumu0&1,2 is used instead of the flavor vacuum
generate a flavor eigenstate, e.g.,ua&5aa

† u0&1,2. If the flavor
vacuumu08& were replaced by the mass vacuumu0&1,2, then
we would have obtainedZ15Z250 instead of Eq.~3.10!. As
discussed above in the exact vacuum treatment, the m
eigenstate vacuum is not annihilated byaa,b operators. In-
deed the term proportional toO(g2) remains in the creation
annihilation operators, so that the accuracy in the orde
O(g2

2 ) can be expected from the results of the exact vacu
approach compared to the perturbative vacuum approxi
tion. The densities of vacuum condensation for antipartic
4-5
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Z1̄,2̄ ,Zā,b̄ are obtained the same as the densities for the
responding particles, i.e.Z1,2,Za,b given by Eqs.~3.10!,
~3.12!, and~3.13!.

We now consider the flavor oscillations in time for
single particle with flavora and momentumkW . In the
Heisenberg picture, the average number of particles with
vor a5a or b in the flavor stateua&5aa

† u08& is given by

^Na~ t !&5^auNa~ t !ua&5^08uaaaat
† aataa

† u08&. ~3.14!

In Eq. ~3.14!, we note that we use the flavor vacuum
obtain the exact result for the flavor oscillations. Later,
Sec. IV, we numerically compare the exact result with
previous approximate result@9#. Using Eqs. ~3.3!, ~3.6!,
~3.7!, we directly apply the standard quantum field theore
method. Since the flavor vacuum is annihilated byaa,b , we
move aa in Eq. ~3.14! to the right most position andaa

† to
the left most position to annihilate the flavor vacuum. Wh
is left is uniquely determined by the unequal time commu
tion relations given by Eq.~3.7! and we find

^auNatua&5^08uaat
† aatu08&1u@aa ,aat

† #u25Za1uAaau2,

^auN2ātua&5^08ub2at
† b2atu08&1u@aa ,b2at#u2

5Za1uAāau2,

^auNbtua.5^08uabt
† abtu08&1u@aa ,abt

† #u25Zb1uAbau2,

^auN2b̄tua&5^08ub2bt
† b2btu08&1u@aa ,b2bt#u2

5Zb1uAb̄au2. ~3.15!

Using the notation ofC, S6 , our results are summarized a

^auNatua&5118C2S2
2 sin2S e11e2

2
t D18S2

2 S1
2 sin2~e2t !

24C2S1
2 sin2S e12e2

2
t D ,

^auNbtua&54C2S2
2 sin2S e11e2

2
t D14S2

2 S1
2 sin2~e1t !

14C2S1
2 sin2S e12e2

2
t D ,

^auN2ātua&54C2S2
2 sin2S e11e2

2
t D18S2

2 S1
2 sin2~e2t !,

^auN2b̄tua&58C2S2
2 sin2S e11e2

2
t D14S2

2 S1
2 sin2~e1t !.

~3.16!

As shown in Eq.~3.16!, the time dependence of the avera
number of particles with a definite flavor is rather comp
cated. It contains oscillating contributions from both thea
→b conversion and from the virtual pair creation in a d
07600
r-

a-

e

c

t
-

namically ‘‘rotating’’ flavor vacuum. As discussed in Re
@9#, thea→b conversion process generates the term prop
tional to

sin2S e12e2

2
t D .

The terms involvinge11e2 ,e1 ,e2 frequencies in Eq.~3.16!
are, however, related to the creation of virtual pairs. For
ample, the virtual pair creation violates energy conservat
within the uncertainty time, i.e.,DEDt'1 ~in our units\
51) and thus both creation and annihilation of, let us s
(a1b̄) virtual pair must occur withint'1/(e11e2) time
interval. Thus, the terms in Eq.~3.16! involving e1
1e2 ,e1 ,e2 frequencies can be related to the creation of d
ferent types of virtual pairs, while the terms involvinge1
2e2 are related to the actuala→b conversion.

Using Eq. ~3.16!, we can also calculate the expectatio
value of the flavor charge operator defined byQa,b5Na,b
2N2ā,2b̄ ,

^Qa&5124C2S1
2 sin2S e12e2

2
t D14CS2

2 sin2S e11e2

2
t D ,

~3.17!

^Qb&54C2S1
2 sin2S e12e2

2
t D24C2S2

2 sin2S e11e2

2
t D ,

or with the conventional parameters,

^Qa&512g1
2 sin2~2u!sin2S e12e2

2
t D

1g2
2 sin2~2u!sin2S e11e2

2
t D ,

^Qb&5g1
2 sin2~2u!sin2S e12e2

2
t D

2g2
2 sin2~2u!sin2S e11e2

2
t D . ~3.18!

From this result, one can also see that there is an additi
term proportional to sin2@(e11e2)/2t# to the usual Pontecorvo
formula. As discussed above, the origin of this term can
understood as a contribution from the virtual pair creation
‘‘rotating’’ vacuum. The correction term is of the order o
O(g2

2 ). As noted earlier, this may explain why it has be
found neither in an ordinary quantum mechanical treatm
nor in the approximate QFT treatment based on a pertu
tive vacuum.

We also calculate the time evolution of the coherent st
for the two mixed quantum fields. The coherent state has
form

uCa&5eCaa
†
u08&. ~3.19!

Extending the above calculation for a single particle, it is n
so difficult to verify that the state containingn particles with
flavor a can be given by

^nuNatun&5
1

n!
^08uaa

nNat~aa
† !nu08&5^Nat&1nuAaau2.

~3.20!
4-6
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BesidesnuAaau2 which is simplyn times the probability of
a→a transition, we see in Eq.~3.20! that the condensat
contribution is present adding the density ofa particles from
‘‘rotating’’ vacuum. Applying this result directly to the co
herent state expansion, we obtain the following expecta
values of the number operatorN(a,b)t in the coherent state
uCa&:

^CauNatuCa&5Za1uCu2uAaau2,

^CauNbtuCa&5Zb1uCu2uAbau2. ~3.21!

Thus, the expectation values of the flavor charge oper
Q(a,b)5N(a,b)2N(2ā,2b̄) turn out to be

^CauQauCa&5uCu2^Qa&

5uCu2F12g1
2 sin2~2u!sin2S e12e2

2
t D

1g2
2 sin2~2u!sin2S e11e2

2
t D G ,

^CauQbuCa&5uCu2^Qb&

5uCu2Fg1
2 sin2~2u!sin2S e12e2

2
t D

2g2
2 sin2~2u!sin2S e11e2

2
t D G . ~3.22!

As we can see in Eq.~3.22!, the vacuum contributionsZ(a,b)
are removed from the flavor charge expectation values
the results for the coherent state are simplyuCu2 times the
expectation values of the flavor charge for the single part
state.

IV. APPLICATION TO REAL MESON STATES

We now apply the results for time evolution of two mix
ing boson fields to the analysis of theh-h8 mixing system.
The masses are taken to be 549 MeV and 958 MeV, res
tively, and of course in the particle rest frame the energie
our formulas reduce to the masses. The phenomenologic
allowed mixing angle (uSU(3)) range of thehh8 system is
given between210° and 223° @15#, where the mixing
angleuSU(3) is defined by Eq.~36! of Ref. @16#. This angle
represents the breaking of the SU~3! symmetry, the eigen-
states of which are already rotated235.26° fromuū1dd̄

andss̄ to a5uū1dd̄22ss̄ andb5uū1dd̄1ss̄. Thus, our
mixing angle is defined byu5uSU(3)235.26°. Recent analy
sis of thehh8 mixing angle using a constituent quark mod
based on the Fock states quantized on the light front ca
found in Ref. @16# and the references therein. The optim
value found for uSU(3) was around219° and thusu
'254°. We use these values in Eqs.~3.16! and ~3.17! @or
equivalently ~3.18!# to determine the evolution of definit
flavor particle number and charge.

In Fig. 1, we present botĥauNatua& ~thick solid line! and
^Qa& ~dotted line! as a function of time when the particl
07600
n

or

d

le

c-
in
lly

l
be
l

momentum is given byk50.1 GeV. For a comparison, w
also show the previous approximate result~thin solid line!
based on the perturbative vacuum@9# corresponding to these
quantities noting that̂ auNatua& and ^Qa& coincide with
each other in this approximation as one can see in Eqs.~3.16!
and ~3.17!. As we show in Fig. 1, the population densi
^auNatua& ~thick solid line! is completely distorted due to
the interaction with the nonperturbative vacuum while t
sinusoidal Pontecorvo result~thin solid line! is obtained for
the approximate perturbative vacuum treatment. We see
large deviation up to 40% in̂auNatua&. However, one can-
not see the same level of deviation in^Qa& and the previous
result @9# based on the perturbative vacuum seems to b
good approximation for the description of flavor charge o
cillations modulo the accuracy of orderO(g2

2 ).
More details of our results on the time evolution of th

particle number with the momentumk50.1 GeV are shown
in Fig. 2, where the thick solid and dashed lines a
^auNatua& and ^auNbtua&, respectively, and the thin solid
and dotted lines are respectively the antiparticle contri
tions of ^auNātua& and ^auNb̄tua&. The hh8 is one of the

FIG. 1. Comparing population density evolution fork50.1
GeV.

FIG. 2. Population density evolution fork50.1 GeV.
4-7
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CHUENG-RYONG JI AND YURIY MISHCHENKO PHYSICAL REVIEW D64 076004
most severely mixed systems due to the great differenc
masses of mixed particles. As we have stated earlier,
simple harmonic structure of average particle number usu
obtained in quantum mechanics or in an approximate Q
treatment@9# is completely altered as a result of nontrivi
interaction with the complicated vacuum. What we see is
superposition of two different cycles as described by E
~3.16!. From the initial moment of time the population o
both a particles ~thick solid line! and b particles ~thick
dashed line! increases. Although the increase of number ob
particles in the system is well understood due toa→b con-
version, the initial increase of thea population is quite un-
expected and caused bya-ā production from vacuum. The
contribution from this process, however, is rather fast so
the general tendency of exchanginga and b particle states
can also be seen quite well. In Fig. 2, we also see the o
lations of the antiparticle number in the system. This effec
given in the order ofg2

2 and usually is absent in an approx
mate QFT treatment. This is entirely a QFT effect whi
cannot be obtained within the framework of quantum m
chanics. In QFT, besides the beams ofa and b particles
moving in thekW direction, we necessarily have an antipartic
beam traveling in the opposite direction. The population d
sity in this beam is correlated with a particle beam so that
total flavor is preserved. The existence of the beam is cau
by ‘‘dynamically rotating’’ vacuum disturbance at the initia
time of thea particle emergence. One should also note t
the existence of ‘‘recoil’’ antiparticle beam is preserved
the more general wave-packet QFT treatment of the mix
problem. Thus, the mixed particle of definite flavor not on
produces the usual oscillation of population density in ti
~or space@17#! but also is accompanied by emitting the bea
of antiparticles traveling in the direction opposite to t
beam of particles. These effects are in principle testable
the experiments.

In Fig. 3, we also plot more details on the time depe
dence of flavor charge expectation value with the same
mentumk50.1 GeV. The thick solid and dashed lines a
^Qa& and ^Qb&, respectively. One can see that they exhi
mainly the simple periodic structure similar to the appro
mate QFT results@8,9# and only slightly distorted due to

FIG. 3. Flavor charge oscillations.
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interaction with the vacuum. The amount of distortion is
g2

2 order, i.e., about 10% for this case. An interesting feat
is, however, the presence of regions where the flavor cha
of a given sort of particles changes sign, which means
antiparticles outnumber the particles. The process can
physically understood as a result ofa-ā production when
the number ofa particles is small due to thea→b transi-
tion.

It is also interesting and experimentally testable that
efficiency of conversion processes and the flavor-vacu
disturbance depend essentially on the energy of the orig
particle. The dependence is effective to the relativistic m
of particles so that the QFT-mixing effects are decreas
with the energy increase of the flavor particle. The distrib
tion of intensity for simple quantum mechanical mixing a
QFT mixing is given by the relationship of amplitude
g1(k), g2(k) which determine the intensity ofa2 andb22

†

terms inaa @see Eq.~3.3!#. In Fig. 4, we plot their depen-
dence on the momentum of the emitteda particle. As we can
see in Fig. 4,g1 amplitude decreases ask increases and goe
to 2 as k→`. In this limit, g1 defines mixing due to a
simple rotation betweena1 and a2 states. Since it can be
successfully computed within the framework of quantu
mechanics, it gives the usual Pontecorvo formula with o
one oscillatory term. On the other hand,g2 appears with an
antiparticle creation operator and describes the Bogoliu
rotation betweena1 andb21 states. This term is also respon
sible for (e11e2)/2 high frequency term and antiparticl
beam creation. As we see in Fig. 4, it decreases ask→` and
the mass difference becomes washed out by the relativ
gain of mass. This also means that at ultrarelativistic lim
the QFT-mixing effects vanish so that the simple Ponteco
formula is restored for flavor oscillation.

To demonstrate the energy dependence, we show in F
the plot of population densities evolving with time for th
larger momentumk50.5 GeV. The line assignments are th
same as shown in Fig. 2. As easily seen in Fig. 5, the int
sity of the antiparticle beam decreases dramatically to ab
10% @in contrast to~20–40!% in Fig. 2# of initial intensity.

FIG. 4. Mixing amplitudes.
4-8
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NONPERTURBATIVE VACUUM EFFECT IN THE . . . PHYSICAL REVIEW D 64 076004
The initial increase in the population density fluctuation
particle beams also reduces even though the quantum
chanical simple oscillations with (e12e2)/2 frequency are
still visibly distorted. Two beams nevertheless demonstr
strong correlation of the same kind as the correlation in
quantum mechanical Einstein-Podolsky-Rosen~EPR! para-
dox problem so that total flavor charge is preserved a
should be. It is also noticeable that there exist moments
time when the antiparticle outnumbers the particle of
same sort thus producing a negative flavor charge as sh
in Fig. 3.

V. CONCLUSIONS AND DISCUSSIONS

The non-trivial scalar and pseudoscalar meson mixing
fects may be understood by the condensation of corresp
ing flavor states in the vacuum@9#. We have now extended
the analysis replacing the perturbative vacuum to the non
turbative~flavor! vacuum. Central to this analysis is the i
terplay between the base~unmixed! Fock space and the
physical Fock space. Their nontrivial relationship gives r
to the mixing and oscillation phenomena. While the simi
quantum field theoretic formulation was presented for f
mion mixing @8,10#, as well as boson mixing@11#, our analy-
sis differs in the derivation of the normalization factorZ
given by Eq. ~2.25! which is crucial to show the unitary
inequivalence between the mass vacuum and the fla
vacuum. We presented a new algebraic method which is
tinct from the conventional method of using a different
equation forZ. While the unitary inequivalence occurs on
in the infinite volume limit even for the boson case as d
cussed in Ref.@11#, we find an intrinsic difference betwee
the fermion and boson cases. As shown in this work,
normalization factorZ for the boson given by Eq.~2.25! has
a singularity on the complex plane atg2sinu52i while the
corresponding result for the fermion does not have any
gularity. As we summarized in Appendix B, this singulari
corresponds to the divergence of the Taylor series expan
in powers ofu for the regiong2u.2. For both the boson
and fermion cases, however, the non-trivial observable m
ing phenomena cannot occur unless there is both a non

FIG. 5. Population density evolution fork50.5 GeV.
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mixing angle and also a nonzero mass~energy! difference
between the two physically measurable mixed states. D
matic small oscillations due to the virtual pair creation occ
in the exact vacuum analysis, while only simple sinusoi
Pontecorvo oscillations occur in the perturbative vacu
treatment. Some clarifying remarks on the Green funct
method and the arbitrary mass parametrization discusse
the previous literature@10,11,13# are also summarized in Ap
pendix C.

As a physical application, we used our formulation
analyze thehh8 system and found that the measured mixi
angle and mass difference betweenh andh8 can be related
to the non-trivial flavor condensation in the vacuum. Ho
ever, more fundamental questions such as the translatio
the condensation in hadronic degrees of freedom to thos
quark and gluon degrees of freedom remain unanswered.
answer to this question depends on the dynamics respon
for the confinement of quark and gluon degrees of freed
and perhaps has to rely on lattice QCD and/or some phen
enological model that accommodates strongly interact
QCD. Further investigation along this line is underway. Als
it would be interesting to look at the mixing transformatio
between gauge vector bosons governed by the Weinb
angle in the electroweak theory as well as vector mes
such as ther andv. While the statistics are the same as t
scalar and pseudoscalar bosons considered here, there w
additional spin dependent interactions which complicate
analysis.
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APPENDIX A: COUPLED EQUATIONS FOR COMPUTING
THE FLAVOR VACUUM STRUCTURE

In this appendix, we summarize the procedure for der
ing Eq.~2.17! that describes a structure of the flavor vacuu
We first define flavor vacuum in terms of mass eigenstate
the most general linear superposition of the form:

u0;u&5 (
n,l ,m,k

Cnlmk~u!~a1
†!n~a2

†! l~b21
† !m~b22

† !ku0&

5 (
n,l ,m,k

Cnlmk8 ~u!

n! l !
~a1

†!n~a2
†! l~b21

† !m~b22
† !ku0&.

~A1!

Then, using the definition of flavor vacuum

aa,bu0;u&50,

b2a,2bu0;u&50, ~A2!
4-9
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and the explicit expression for the ladder operators given
Eq. ~3.3!, one can derive an infinite set of linear equatio
for Cnlkm8 coefficients:

CC8n11,lmk1S1C8n,l 11,mk1S2Cnlm,k218 50,

CC8n,l 11,mk2S1C8n11,lmk1S2C8nl,m21,k50,

n,l ,m,k50,1,2,3, . . . . ~A3!

To solve this infinite set of equations, we can expre
C8n11,lmk ,C8n,l 11,km in terms ofC8nl,m21,k ,Cnlm,k218 so that
we step by step reduce then1 l number of particles. Denot
ing

S Z12 Z11

Z22 Z21
D 52S2S C S1

2S1 C D 21

~A4!

~notation forẐ is chosen in correspondence to the index
particle type!, we can write this relationship as
um

ov

07600
y
s

s

f

C8n11,lmk5Z12Cnlm,k218 1Z11C8nl,m21,k

C8n,l 11,mk5Z22Cnlm,k218 1Z21C8nl,m21,k . ~A5!

One also can write this in a symbolic manner introducing
kind of shifting operator with definition

k̂Cnlmk8 5Cnlm,k218 ,

m̂Cnlmk8 5C8nl,m21,k . ~A6!

With the use of Eq.~A6!, Eq. ~A5! may be rewritten as

C8n11,lmk5~Z12k̂1Z11m̂!Cnlmk8

5~Z12k̂1Z11m̂!2C8n21,lmk5 . . . ,

C8n,l 11,mk5~Z22k̂1Z21m̂!Cnlmk8

5~Z22k̂1Z21m̂!2C8n,l 21,mk5 . . . , ~A7!

and finally it can be written as
Cnlmk8 5~Z12k̂1Z11m̂!n~Z22k̂1Z21m̂! lC800mk5S (
m850

n

(
t850

l

Cn
m8Cl

t8Z11
m8Z12

n2m8Z21
t8 Z22

l 2t8k̂n1 l 2(m81t8)m̂m81t8D C800mk .

~A8!
of

ed
r
st

es
One should note that, since total momentum of vacu
states should be zero,C800mk50 unlessm5k50. Therefore,
in Eq. ~A8! only terms with m81t85m,n1 l 2(m81t8)
5k must survive and from Eq.~A4! we get Z115
2Z22,Z125Z21 to find

u0,u&5Z (
n,l 50

`

(
m50

n1 l
Bnlm

n! l !
~ â1

†!n~ â2
†! l~ b̂21

† !m~ b̂22
† !n1 l 2mu0&,

~A9!

where

Bnlm5 (
m81t85m
0<m8< l
0<t8<n

Cn
m8Cl

t8Z11
l 1m82t8Z12

n2m81t8~21! l 2t8.

~A10!

Using a direct expansion, one can also verify that the ab
expression for the vacuum state is equivalent to

u0,u&5Z(
n,l

1

n! l !
~Z11a1

†b21
† 1Z12a1

†b22
† !n

3~2Z11a2
†b22

† 1Z12a2
†b21

† ! l u0&. ~A11!
e

APPENDIX B: PERTURBATIVE EXPANSION IN u

FOR THE FLAVOR VACUUM

In this appendix, we try to directly estimate the norm

the flavor vacuum stateG21(u)u0&5exp(2uŜ)u0& using the
perturbative expansion in powers ofu and show that the
perturbative calculation of the flavor vacuum state is inde
impossible for large g2u. Truncating the series fo
G21(u)u0& to theN terms, we have the term with the large
number of particles coming from (g2/2)(a1

†b22
† 1a1

†b22
† ) in

the (2uŜ)N. Thus, the truncated series ofGN
21(u)u0& can be

written as

GN
21~u!u0&5X1

1

N! S 2
g2u

2 D N

~a1
†b22

† 1a2
†b21

† !Nu0&

5X1
1

N! S 2
g2u

2 D N

(
n50

N

CN
n ~a1

†!n~b22
† !n~a2

†!N2n

3~b22
† !N2nu0&, ~B1!

whereX denotes all terms with the total number of particl
and antiparticles less than 2N. For the norm of the above
expression we can then write
4-10
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iGN
21~u!u0&i25iXi21S g2u

2 D 2N 1

N! 2

3 (
n50

N

n!n! ~N2n!! ~N2n!!
N! 2

n! 2~N2n!! 2

5iXi21~N11!S g2u

2 D 2N

. ~B2!

Thus wheng2u.2 the norm of theu0,u&N5GN
21(u)u0& is

growing as the number of terms kept in the expansion of
G(u) grows and therefore the transformation opera
GN

21(u) is not a well defined operator in the mass-eigens
Fock space.

One may also try to check directly the identi
G(u)G21(u)51. In this type of approach one defines

G~u!5 lim
N→`

GN~u!5 lim
N→`

(
n50

N
~u•Ŝ!n

n!
. ~B3!

Then, one shall prove that limN→`iGN(u)GN
21(u)21̂i50,

i.e., limN→`i(GN(u)GN
21(u)21̂)ux&i50 for any mass-

eigenstate stateux& if G(u) is well defined. When multiply-
ing GN(u) andGN

21(u) one typically get all coefficients van

ished till the power ofN and then have a ‘‘tail’’ up to theŜ2N

coefficient. If G(u) is well defined, this tail is expected t
vanish whenN is taken to infinity. However, this does no
always happen in the perturbative expansion. To demons
this one may consider the last term of the ‘‘tail’’ given e
actly by Ŝ2N/(N!N!). Recalling thatŜ generator contains
(g2/2)(a1

†b22
† 1a2

†b21
† ) combination, we can write the stat

(GNGN
2121)u0& as

~GNGN
2121!u0&5Y1

~ug2!2N

22NN! 2 (
t50

2N

C2N
t ~a1

†! t~b22
† ! t

3~a2
†!2N2t~b21

† !2N2tu0&, ~B4!

whereY denotes all states with less then 4N number of par-
ticles and antiparticles. The norm of this state is then giv
by

i~GNGN
2121!u0&i2

5iYi21
1

N! 4 S g2u

2 D 2N

(
t50

2N

~C2N
t !2t! t! ~2N2t !!

3~2N2t !! &~2N11!S g2u

2 D 2N

. ~B5!

Again wheng2u.2 the above expression is not converge
and theG(u)G21(u) expression is in fact not well defined i
terms of mass-eigenstate fields.

For small values ofu, however, the perturbative expan
sions are indeed convergent and the radius of convergen
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te

n

t

is

related to the pole ofZ5^0u0,u& on the complex plane ofu.
Here, the pole~critical! value is given byg2sinh(ucritical)
52.

APPENDIX C: REMARKS ON THE GREEN FUNCTION
METHOD AND THE ARBITRARY MASS

PARAMETRIZATION

1. Green function method

We note that a straightforward use of the Green funct
with the conventional definition̂ 0uT@c(x)c̄(y)#u0& en-
counters some difficulties in the mixing analysis due to
fact that the flavor vacuum state is not stationary in tim
@ u0,u&(t)Þu0,u&(t8)#. The conventional Green function can
not be adopted without specifying at which times the flav
vacua were taken in the inner product. In fact, the most
vious generalization of the Green function as the over
between the states created at timesx0 and y0 @i.e., G(a
→b;x0,y0)5^0,y0uT@cbc̄a#u0,x0&] breaks down due to the
unitary inequivalence of the flavor Fock spaces at differ
times. Therefore, some sort of modification, such as para
translation of states to the same time, shall be neede
define the Green function appropriate in the mixing analy
The flavor mixing problem can then be treated using t
modified propagation functions as discussed in the previ
literature@10#.

In the process of our calculations we also noticed t
some entities indeed appeared as ‘‘transition’’ amplitud
from one state to another. For example,^Na&5Za1uAaau2
can be considered as superposition of ‘‘vacuum rotatio
background contributionZa and contribution froma→a
transition withAaa transition amplitude. In this manner, on
can introduce the Green function that only accounts for
transition amplitude without the vacuum contribution. In th
way the Green function (t.0) can be defined by

Gaa~x,t;y,0!5^08uwa~x,t !wa
†~y,0!u08&, ~C1!

where the vacuum state is taken at any~but certain! fixed
time, for examplet50, and this coincides with the definitio
given in @10#. We note that att50 the modified Green func
tion is proportional to the delta function in the position spa
and thus it vanishes in the spacelike region. Also, the mo
fied Green function satisfies the same field equation that
field operators satisfy even ift is not zero. Thus, to the exten
that the field equations satisfy the causality, the modifi
Green function satisfies the same.1 For the propagator with a
definite momentumkW , we then obtain

Gaa~kW ,t !5Aaa* ~kW ,t !,

Gab~kW ,t !5Aba* ~kW ,t !, etc. ~C2!

1See Ref.@18# for the discussion of causality that the Green fun
tion should satisfy.
4-11
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Equation~3.7! then allows to define the propagation fun
tions for any kind of transition.

We should note, however, that treatment with such
modified Green function does not cover all the variety of
effects in the mixing problem. In particular the condens
contribution Za , which can be related to the unitary in
equivalence of the flavor Fock spaces at different times
lost so that this part of the problem is missing when
above approach is taken. Nevertheless, the Green func
method is useful in calculations of flavor-operator expec
tion values, scattering amplitudes and other quantities
which the vacuum contributionZ cancels out.

2. Arbitrary mass parametrization

In this sub-appendix, we remark on the arbitrary ma
parametrization@11,13# in the mixing problem. As discusse
in Ref. @13#, one may treat the flavor fields that were initial
written as

fa5E dkW

~2p!3/2
@uk,iak,i~ t !1v2k,ib2k,i

† ~ t !#eikWxW, ~C3!

equally well in an arbitrary mass basis, i.e.,

fa5E dkW

~2p!3/2
@ ũk,i ãk,i~ t !1 ṽ2k,i b̃2k,i

† ~ t !#eikWxW, ~C4!

whereũk,i and ṽk,i are free-field amplitudes with some ne
arbitrary masses. Since there is no physical reason to p
one form over the other, Ref.@13# and then Ref.@11# claimed
that no arbitrary mass parameters should appear in physi
observable quantities, i.e., they shall be invariant under s
cific Bogoliubov transformation going from Eq.~C3! to Eq.
~C4! @11#

S ãi~ t !

b̃i
†~ t !

D 5J21~ t !S ai~ t !

bi
†~ t ! D J~ t !. ~C5!

It is true @11,13# that the perturbative vacuum treatme
@8,9# yields the normalization of the flavor state not as un
but as some constant that depends on the arbitrary mas
rameter. In particular, Eq.~3.3! can be viewed as an expan
sion of the flavor ladder operator in some basis construc
from the free-field ladder operators. Then, the normalizat
of the one-particle state in perturbative vacuum treatment@9#
was given only by theuS2u2 coefficient at theb1,2

† operator,
e

d
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which is obviously dependent on the choice of basis, e
changes with rotation in$(a1 ,a2)-(b1 ,b2)% plane. Such ar-
bitrariness is completely avoided in the exact vacuum tre
ment because the normalization of the flavor state is given
unity no matter what mass basis is used.

However, the claim@11,13# that the number expectatio
values are not physical because they do depend on the
trary mass parameters cannot be correct. As a counter
ample to such claim, one can consider a very specific cas
the mixing problem, namely, when the mixing is abse
@G(u)51#. As we discuss below, applying such a clai
@11,13# to this specific example leads to a conclusion th
cannot be correct. With no mixing, we are dealing with no
ing else but a free-field problem where the particle num
operatorNi(t)5ai

†(t)ai(t) and the particle number expecta
tion value^Ni&5u$ai(0),ai

†(t)%u2 ~for simplicity we consider
the fermion case! must be well-defined physically observab
quantities. However, when we apply the transformat
given by Eq.~C5! and compare directly Eq.~C3! and Eq.
~C4!, we observe that

ãi5~ ũk,i
† uk,i !ak,ie

2 i ek,i t1~ ũk,i
† v2k,i !b2k,i

† ei ek,i t

5rkak,ie
2 i ek,i t1lkb2k,i

† ei ek,i t ~C6!

and

^Ñi&5u$ãi ,ãi
†~ t !%u25uurku2e2 i ek,i t1ulku2ei ek,i tu2,

~C7!

where we follow the notations in Refs.@11,13#. In the case of
free fields the number expectation value does depend on
arbitrary mass parameters and thus following the ab
claim one may conclude that^Ni& is not a physically mea-
surable quantity. However, this cannot be correct beca
both the particle number operator and the number expe
tion value in the free-field problem are well-defined physic
observables. We view the above inconsistency as follo
The transformation given by Eq.~C5! is in fact nothing else
but a redefinition of the particle states, so that the tilde qu
tities correspond to some new quasiparticle objects and
number operator now describes the number of a differ
type of particles than before. Therefore, the number oper
average shall not be expected to be the same in such tr
formations. Indeed, it should change in some covariant
self-consistent manner instead of being invariant under s
a redefinition.
-
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